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Abstract

A new method of identifying modal parameters by decomposing response signals with Gabor transform
is presented in this paper to estimate natural frequencies, damping ratios and mode shapes of linear time
invariant systems. According to Gabor expansion theory, responses of a multi-degree-of-freedom system
can be decomposed into uncoupled signal components, each vibrating at a single natural frequency. From
these uncoupled signals, modal parameters are subsequently extracted with common methods. The
proposed method can process stationary and non-stationary responses and requires no input signal except
for the response signals generated by unknown excitation acting on a system. In the sense of less restriction
on the in–out signals, the approach based on time–frequency decomposition is very general. A simulation
study on a simply supported beam under non-stationary excitation has demonstrated that the proposed
method is effective in parameter estimation.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional methods of modal parameter identification have been well developed to fulfill
general identification tests in laboratory and other fields, where excitation can be conveniently
carried out on structures. With sampled input and output data, many procedures can be
implemented in time or frequency domain, such as those methods extracting modal parameters
on the basis of frequency response matrix, recursive model of time series or state space equations
[1–5]. In laboratory and other almost ideal environment, these conventional methods are effective
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and irreplaceable. However, for large-scale structures or running machines, it is the general
case that energy consumption in excitation is unusually high or no suitable position can
be found to carry out the excitation, therefore implementation of tests becomes a big problem [6].
The recently proposed approaches of parameter identification under environmental excitation
have bypassed some difficulties encountered in these circumstances, where environmental
excitation is supposed to have sufficient energy and satisfy certain assumptions regarding signal
stationarity, and modal parameters are extracted from response data only. When the
environmental excitation is stationary white noise, the well-known NExT method can be
employed to estimate modal parameters [7–9]. But in real world, being stationary is somewhat a
mandatory requirement for environmental excitation. So, non-stationary process or structural
responses to environmental excitation must be considered in modal parameter identification.
Fortunately, the time–frequency analysis of signals, well developed in the last two decades,
presents a new way to identify modal parameters from response data only. With time–frequency
analysis both stationary and non-stationary signals can be processed and represented in time–
frequency domain, which is essential to the parameter identification from non-stationary
response data.
Signal processing in pure time or frequency domain is usually unable to separate

characteristics mixed in a given signal, especially for those signals of variable frequencies
[10–11]. However, the time–frequency analysis takes an arbitrary signal as the function of time
and frequency and thus gives more accurate and sufficient information on characteristic
evolution as well as energy distribution in the time–frequency plane. Moreover, time–frequency
analysis methods have found many successful applications in industries [12]. In modal
parameter identification, the bilinear time–frequency transform of signals has been employed to
extract modal parameters [13]. Although the bilinear transform possesses many good
properties, the cross term and negative energy distribution will decrease resolution and result
in poor accuracy. In contrast to this kind of transform, the linear transforms, such as
short-time Fourier transform, Gabor transform and wavelet transform, have no cross term and
always give non-negative energy distribution. In wavelet analysis, adaptive windows are
used in order to achieve the best time resolution [14]. As a result, frequency resolution is
different between the lower and the higher frequency band. Compared with the wavelet
transform, Gabor transform uses a fixed analysis window and consequently yields constant
frequency resolution. Gabor transform can decompose an arbitrary signal into short-period
waves that vibrate at a certain lattice in the time–frequency plane [15–16]. From these
short-period waves, local information can be reconstructed to represent certain characteristics. In
this paper, Gabor expansion is applied to decompose response signals and extract modal
parameters.
In fact, the proposed approach based on Gabor expansion theory carries out estimation by

decomposing every sampled response into uncoupled signal components and subsequently
extracting modal parameters from these uncoupled components with common methods. This is
distinct from the traditional approaches which extract parameters from input–output data.
Moreover, this approach is suitable for stationary and non-stationary responses. We will discuss it
in three sections. Section 2 gives an introduction of Gabor expansion theory, and in Section 3 the
proposed method is fully explored. Section 4 gives a simulation study on the parameter estimation
of a simply supported beam under non-stationary excitation.
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2. Gabor expansion

Suppose f ðtÞ; gðtÞAL2ðRÞ and fgmnðtÞ : gmnðtÞ ¼ gðt � maÞexpðjnbtÞ; a; b > 0; abp2p;m; nAZg
constitutes a frame, i.e., there exist constants A and B with AXB > 0 such that

B fðtÞj j2p
X

m

X
n

fðtÞ; gmnðtÞh ij j2pA fðtÞj j2 8fðtÞAL2ðRÞ; ð1Þ

where fðtÞ; gmnðtÞh i ¼
R

R
fðtÞ *gmnðtÞ dt; the inner product of fðtÞ and gmnðtÞ; *gmnðtÞ is the complex

conjugate of gmnðtÞ; and fðtÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðtÞ;fðtÞh i

p
; the norm of fðtÞ in L2ðRÞ:Gabor expansion of f ðtÞ

under the frame fgmnðtÞg can be expressed as

f ðtÞ ¼
X

m

X
n

CmngmnðtÞ; ð2Þ

where Cmn ¼ f ðtÞ; gmnðtÞh i are referred to as Gabor coefficients and fgmnðtÞg is the dual frame of
fgmnðtÞg with gmnðtÞ ¼ gðt � maÞexpðjnbtÞ: Signal gðtÞ is the analysis window function and gðtÞ the
synthesis window function. Eq. (2) is the atomic decomposition of signal f ðtÞ; which indicates that
the superposition of locally vibrating waves at lattice ðm; nÞ is equal to f ðtÞ: This implies all
information contained in signal f ðtÞ can be reconstructed from Gabor coefficients fCmng:
When Gabor coefficients corresponding to a certain characteristic are all distributed in a region

O (in Fig. 1, the solid circle and rectangle represent different characteristic), one can fully recover
the corresponding signal with Eq. (2). However, when Gabor coefficients are not fully covered by
a given region (as shown in Fig. 1) or are contaminated to some extent by noise coefficients, the
constructed signal from selected Gabor coefficients is different from the exact one. However, an
optimal approximation can be obtained by performing an optimization procedure [16].

3. Parameter identification of LTI systems

Consider an LTI system of N degrees of freedom:

M .X þ C ’X þ KX ¼ FðtÞ: ð3Þ

Let ff1;f2;y;fNg be the corresponding N vibration modes, ð0; 0;y; 0ÞT be the initial state
of Eq. (3), and assume the excitation force FðtÞ ¼ ðf1ðtÞ; f2ðtÞ;y; fNðtÞÞ

T has sufficient bandwidth.
According to the vibration theory, the response X ðtÞ ¼ ðx1ðtÞ;x2ðtÞ;y;xNðtÞÞ

T of Eq. (3) can be
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written as

X ðtÞ ¼
X

r

fr

Zrormr

Z t

0

fT
r F ðtÞexpð�xrorðt � tÞÞsinðZrorðt � tÞÞ dt; ð4Þ

where mr ¼ fT
r Mfr; Zr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r

q
; xr and or are, respectively, the damping ratio and natural

frequency of mode r: Eq. (4) implies that X ðtÞ is the superposition of vibration of N modes. Let
XrðtÞ be the rth modal vibration, i.e.,

XrðtÞ ¼
fr

Zrormr

Z t

0

fT
r F ðtÞexpð�xrorðt � tÞÞsinðZrorðt � tÞÞ dt; r ¼ 1; 2; 3;y;N; ð5Þ

we have X ðtÞ ¼
P

r XrðtÞ: Define Gabor operator G : L2ðRÞ-l2ðZ2Þ as

Gðf Þ ¼ fCmn : Cmn ¼ f ðtÞ; gmnðtÞh i;m; nAZg ð6Þ

and substitute the response xsðtÞ of point s into Eq. (6) to obtain

GðxsðtÞÞ ¼ Gð
X

r

xsrðtÞÞ ¼
X

r

GðxsrðtÞÞ ¼
X

r

fCmnðxsrðtÞÞg; s ¼ 1; 2; 3;y;N; ð7Þ

where fCmnðxsrðtÞÞg are Gabor coefficients of the rth modal response xsrðtÞ of point s: Eq. (7)
reveals that Gabor coefficients of response xsðtÞ are the summation of those of the N modes. This
property makes Gabor transform superior to other high order transforms in response
decomposition. Coefficients fCmnðxsrðtÞÞg are actually distributed over a certain region in the
time–frequency plane, from which vibration signal of frequency or can be reconstructed by
selecting Gabor coefficients from fCmnðxsrðtÞÞg: To guarantee the accuracy of reconstruction,
energy of each vibration mode is supposed to be concentrated in the vicinity of frequency or and
modal frequencies are sufficiently spaced. Under this assumption, the reconstructed response
corresponding to frequency or will be lightly contaminated by other modes. Eq. (8) gives the
formula of reconstructing xsrðtÞ from selected coefficients within the region OðorÞ in the time–
frequency plane:

xsrðtÞ ¼
X

m

X
n

HmnðorÞCmnðxsrðtÞÞgmnðtÞ; r; s ¼ 1; 2; 3;y;N; ð8Þ

where HmnðorÞ is an index function defined by

HmnðorÞ ¼
1 ðm; nÞAOðorÞ;

0 otherwise

(

and OðorÞ is an area masking the selected Gabor coefficients.
Parameter estimation in the following sections is based on Eq. (8).

3.1. Frequency estimation

Natural frequencies can be estimated from Gabor coefficients of reconstructed signals. For the
rth natural frequency or; it can be given as

or ¼
P

k oðkÞHmkCmkðxsrðtÞÞP
k HmkCmkðxsrðtÞÞ

; r ¼ 1; 2; 3;y;N; ð9Þ
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where oðkÞ is the kth discrete frequency, s represents an arbitrary point and t ¼ ma is an arbitrary
instant. For a stationary stochastic response, or should be the expectation of all estimated
samples, i.e.,

or ¼
1

M

XM

i¼1

orðiÞ;M-N: ð10Þ

or can also be estimated with traditional methods, but Eq. (9) is very general and suitable for
frequency estimation of time-varying or non-linear systems.

3.2. Mode shape estimation (real mode)

With Eq. (5) the rth modal vibration of point s can be described as

xsrðtÞ ¼
fsr

Zrormr

Z t

0

fT
r F ðtÞexpð�xrorðt � tÞÞsinðZrorðt � tÞÞ dt; r; s ¼ 1; 2; 3;y;N; ð11Þ

where fsr is the amplitude of mode r at point s: Suppose x1rðt0Þa0; then from Eq. (11) the rth
normalized mode shape can be estimated as follows:

ð1;f2r=f1r;y;fNr=f1rÞ
T ¼ ð1;x2rðt0Þ=x1rðt0Þ;y; xNrðt0Þ=x1rðt0ÞÞ

T: ð12Þ

However, estimating mode shapes directly with Eq. (12) may result in large errors. To reduce
estimation error, two finite sequences ~xxsrðLÞ ¼ fxsrðt0Þ;xsrðt1Þ;y;xsrðtLÞg

T and ~xx1rðLÞ ¼
fx1rðt0Þ;x1rðt1Þ;y; x1rðtLÞg

T can be constructed to give an estimation of fsr=f1r:

fsr=f1r ¼ ~xxsrðLÞ
T~xx1rðLÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xx1rðLÞ

T~xx1rðLÞ
q

ð13Þ

Eq. (12) indicates the estimation of mode shapes is independent of exciting force. Therefore, one
can obtain mode shapes as well by substituting the exciting force F ðtÞ ¼ AðtÞsinðZrortþ jÞ into
Eq. (11). Performing Fourier transform on both sides of Eq. (11) yields

xsrðoÞ ¼ fsrhrðoÞf
T
r F ðoÞ; s ¼ 1; 2; 3;y;N; ð14Þ

where xsrðoÞ ¼ xsrðtÞ; expðjotÞh i; F ðoÞ ¼ FðtÞ; exp ðjotÞh i; the Fourier transform of xsrðtÞ and
FðtÞ; respectively, and hrðoÞ ¼ expð�xrortÞsinðZrortÞ=ðZrormrÞ; expðjotÞ

	 

: Eq. (14) implies that

time–frequency filtering of force signal has the same effect as direct filtering of response data.
Note that xsrðtÞ is the signal of frequency or; it should be the same as that generated by FðtÞ ¼
AðtÞ sin ðZrortþ jÞ: Therefore, normalized mode shapes can also be estimated from all the
reconstructed xsrðtÞ:
Generally, distribution of xsrðtÞ on the time–frequency plane is complicated due to the mixed

environmental excitation, but mode shape estimation based on Eq. (8) is only affected by the
validity of reconstructed signal. Hence, one can extract mode shapes with high accuracy as long as
xsrðtÞ has sufficient signal-to-noise ratio (SNR) within the vicinity of or: Sensor noise and
disturbance from adjacent vibrating modes constitute the overall noise in xsrðtÞ; which might cause
large errors in estimated mode shapes when using Eq. (13). For stochastic responses, Gabor
coefficients fCmnðxsrðtÞÞg of xsrðtÞ will distribute randomly over a certain area in the time–
frequency plane. Note that CmnðxsrðtÞÞ ¼ xsrðtÞ; gmnðtÞh i represents a linear operator, xsrðtÞ should
be reconstructed from those coefficients of high energy in the region OðorÞ so as to reduce
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disturbance from adjacent modes. However, according to the theory of stochastic vibration,
correlation of responses contains magnitude and phase information of each mode when the
environment excitation is stationary white noise, and in this case, each mode can be estimated
indirectly by Gabor transform on given correlation data but with higher accuracy. As in the
frequency estimation, mode shape estimation poses no restriction on signal stationarity except for
the resolution of Gabor transform and SNR of sampled responses.

3.3. Damping estimation

Generally, damping ratio is more difficult to accurately estimate from response data than mode
shape and frequency. In our approach, damping ratio is estimated on the assumption that there
exists high-energy free vibration in responses or that free vibration can be constructed from
response data. When excitation is stationary white noise, autocorrelation of response data has the
form of free vibration. In this case, damping estimation is relatively simple. When response is non-
stationary but has high-energy free vibration, one can reconstruct the free vibration according to
Eq. (8).
Suppose there exists free vibration in xsrðtÞ; it can be reconstructed and expressed as

xsrðtÞ ¼ ðAr exp ð�xrortÞ þ nðtÞÞsinðZrort þ jrÞ; ð15Þ

where nðtÞ denotes noise. Define a scalar function rrðtÞ:

rrðtÞ ¼
1

T

Z tþT

t

x2
srðtÞ dt; ð16Þ

where T is the length of integral interval. If nðtÞ ¼ 0; rrðtÞ has the following form:

rrðtÞ ¼ ðar þ brðT ; tÞsinð2Zrort þ yrÞÞexpð�2xrortÞ; ð17Þ

where brðT ; tÞ
��
T-N

-0: Given a finite T ; damping ratio xr can be accurately estimated from
Eq. (16) by curve fitting. This is a general method and it is still valid albeit nðtÞa0; but the
accuracy is affected by nðtÞ:
As mentioned above, autocorrelation of response data has the form of free vibration when

excitation is stationary white noise, however, performing correlation will weaken low-energy
signals and result in free vibration only containing high-energy modal vibration. Therefore, if
modal vibration energy is concentrated in the vicinity of modal frequencies, correlation can be
done after the low-energy modal vibration is reconstructed, the validity of which is guaranteed by
Eq. (14) which also implies that time–frequency filtering of response is equal to the weighting of
frequency response function. Concentration of modal vibration energy is necessary otherwise
correlation of reconstructed signal is meaningless.
In the next section, Eqs. (8), (9), (13) and (16) are used to estimate modal parameters of a

simply supported beam under non-stationary excitation.

4. Simulation

Consider a simply supported beam of three degrees of freedom (Fig. 2). Natural frequencies
and damping ratios of this model are, respectively, 28.33, 112.54, and 238.95Hz and 0.0562,
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0.0141, and 0.0067. Frequency response functions FR1–FR3 corresponding to each measurement
point are given in Fig. 3.
Excite the beam at point 1 and measure acceleration responses at three points simultaneously

with sampling rate 1000Hz. Excitation is the fast sine sweep plus white noise and the duration is
1.28 s. Frequency band and amplitude of the fast sine sweep are 1–400Hz and 1.0, respectively.
The mean and variance of white noise are 0 and 1.0. Apparently, the acceleration response of each
point is non-stationary. Fig. 4 gives the acceleration response of point 3, which contains
overlapped free vibration of the three modes. Fig. 5 is the distribution of Gabor coefficients of the
response of point 3, which clearly reflects the evolution of excitation and modal responses. Figs. 6
and 7 are, respectively, the distribution of Gabor coefficients of the responses of points 2 and 1. In
Fig. 7, Gabor coefficients of the random response are not concentrated in the vicinity of the three
modal frequencies due to the direct noise coupling in the acceleration response of point 1.
To estimate modal frequencies, Gabor coefficients corresponding to each modal frequency are

collected from the distribution in Fig. 5 and the first order moment is computed according to
Eq. (9). The estimated frequencies are listed in Table 1. In this example, as modal frequencies are
constant, we can also reconstruct each modal vibration and then estimate all frequencies with
spectrum analysis. Modal frequencies estimated from the distribution in Fig. 7 are also given in
Table 1, which demonstrates frequency estimation is robust to noise contamination.
To estimate modal damping, free vibration is reconstructed from the distribution in Fig. 5.

Figs. 8–10 are the reconstructed results which are lightly contaminated by noises. With the
recovered free vibration, functions r1ðtÞ; r2ðtÞ; r3ðtÞ are computed according to Eq. (16) and
damping ratio of each mode is estimated by curve fitting. Table 1 gives the estimated results.
Distribution in Fig. 7 is also used to give another estimation, but Table 1 shows that the estimated
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damping ratio of the first mode has large deviation whereas the others are relatively accurate. The
reason is that the first modal vibration has low SNR and the others have high SNR. Here, SNR is
defined as

SNR ¼ 10log10ðEs=EnÞ; ð18Þ
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Fig. 4. Acceleration response of point 3.

Fig. 5. Distribution of Gabor coefficients (point 3).

Table 1

Actual and estimated modal parameters

Frequency (Hz) Damping ratio

1 2 3 1 2 3

Actual 28.33 112.54 238.95 0.0562 0.0141 0.0067

Estimated (point 3) 28.5 112.8 239.5 0.0547 0.0144 0.0071

Estimated (point 1) 28.1 112.4 239.6 0.07 0.0147 0.0069
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Fig. 7. Distribution of Gabor coefficients (point 1).

Fig. 8. Free vibration of the first mode.

Fig. 6. Distribution of Gabor coefficients (point 2).
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where Es and En represent, respectively, the energy of the exact free vibration and noise in the
recovered free vibration. At the measurement point 3, SNR corresponding to the first mode is
15.8 dB and the third mode 17.3 dB. However, at the measurement point 1, SNR is 0.6 dB for the
first mode and 10.1 dB for the third mode.
Estimation of mode shapes needs response data of the three points. To estimate the first mode

shape, one needs to reconstruct vibration signals corresponding to the first modal frequency from
the distributions in Figs. 5–7, respectively. Because the response of point 1 has low SNR, signal
reconstruction should be based on high-energy coefficients distributed in Fig. 5. Here, point 3 is
chosen as the reference point, and the first normalized mode shape is computed according to
Eq. (9). Fig. 11 gives the actual and estimated first mode shape, which illustrates the effect
of heavy noise on mode shapes. Modes 2 and 3 can be estimated in the same way, and
they are given, respectively, in Figs. 12 and 13. It is worth mentioning that mode 2 is
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Fig. 9. Free vibration of the second mode.

Fig. 10. Free vibration of the third mode
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Fig. 11. The first mode shape.

Fig. 12. The second mode shape.

Fig. 13. The third mode shape.
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extracted from free vibration while mode 3 from random responses. As shown in Fig. 12, the
second mode is almost accurately estimated, which is attributed to the high SNR of responses of
points 1 and 3.
In the above estimation, modal parameters are extracted from non-stationary response signals,

and especially modal damping and mode shapes are estimated in time domain from reconstructed
free vibration or random responses after response signals are decomposed in time–frequency
domain.
For the purpose of comparison, a subspace identification procedure is also employed to give

another estimation. Estimated parameters are given in Table 2 and mode shapes are shown in
Figs. 11–13, respectively.
As shown in the table and figures, the subspace identification procedure also gives a good

estimation except for the large errors in damping ratio and mode shape of the first order.

5. Conclusion

With Gabor transform, the response of an N-degree-of-freedom system can be decomposed into
atomic vibration in time–frequency domain, from which modal vibration corresponding to each
modal frequency can be reconstructed. This makes modal parameter estimation of a multi-degree-
of-freedom system almost like that carried out on a single-degree-of-freedom system. Moreover, as
Gabor transform poses no restriction on signal stationarity, estimation based on this transform is
suitable for general responses, which implies that the proposed method is effective in extracting
modal parameters from response data only. For time-varying or non-linear systems, time-varying
frequencies can also be estimated with time–frequency decomposition due to the general estimation
formulae. In the simulation study, frequency estimation has proved robust to noise contamination
while damping and mode estimation is liable to noise contamination. To guarantee the validity and
accuracy of parameter estimation, modal frequencies are supposed to be sufficiently spaced and
response energy is assumed to be concentrated in the vicinity of modal frequencies. This will limit
the application of the proposed approach to some extent in general cases. Therefore, further study
should solve the problem of identifying modal parameters of systems that are heavy damped or
have dense modal frequencies, and one way out might be incorporating model based parametric
estimation in the time–frequency analysis.
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